Controlled preparation of wet granular media reveals limits to lizard burial ability.
نویسندگان
چکیده
Many animals move within ground composed of granular media (GM); the resistive properties of such substrates can depend on water content and compaction, but little is known about how such parameters affect locomotion or the physics of drag and penetration. Using apparatus to control compaction of GM, our recent studies of movement in dry GM have revealed locomotion strategies of specialized dry-sand-swimming reptiles. However, these animals represent a small fraction of the diversity and presumed burial strategies of fossorial reptilian fauna. Here we develop a system to create states of wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus), a generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (≈30 s) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics and 'slip' were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ≈4× more resistive than dry GM. In total, our measurements indicate that while the rheology of the dry and wet GM differ substantially, the lizard's burial motor pattern is conserved across substrates, while its burial depth is largely constrained by environmental resistance.
منابع مشابه
Environmental interaction influences muscle activation strategy during sand-swimming in the sandfish lizard Scincus scincus.
Animals like the sandfish lizard (Scincus scincus) that live in desert sand locomote on and within a granular medium whose resistance to intrusion is dominated by frictional forces. Recent kinematic studies revealed that the sandfish utilizes a wave of body undulation during swimming. Models predict that a particular combination of wave amplitude and wavelength yields maximum speed for a given ...
متن کاملAnimal and Robotic Locomotion on Wet Granular Media
Most of the terrestrial environments are covered with some type of flowing ground; however, inadequate understanding of moving bodies interacting with complex granular substrates has hindered the development of terrestrial/all-terrain robots. Although there has been recent performance of experimental and computational studies of dry granular media, wet granular media remain largely unexplored. ...
متن کاملCorrection. Locomotor benefits of being a slender and slick sand-swimmer.
Squamates classified as 'subarenaceous' possess the ability to move long distances within dry sand; body elongation among sand and soil burrowers has been hypothesized to enhance subsurface performance. Using X-ray imaging, we performed the first kinematic investigation of the subsurface locomotion of the long, slender shovel-nosed snake (Chionactis occipitalis) and compared its biomechanics wi...
متن کاملCodalike multiple scattering of elastic waves in dense granular media.
We study the multiple scattering of short-wavelength ultrasound through the force networks in dry and wet glass bead packings under stress. Over long distance scales, the diffusion approximation is shown to describe adequately the transport of elastic waves dominated by shear waves. The recovered transport mean path reveals a short-range correlation of the force chains. Also we observe the dras...
متن کاملMechanics of Undulatory Swimming in a Frictional Fluid
The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical biology
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2015